
HES 7:
Low-Level, Common Hardware

Interfaces for FHE
Proposing a Joint Standardization Initiative Across

the FHE Compiler, Library, and Hardware Accelerator
Communities

Context: Below the software stack lurks…acceleration hardware

FHE Libraries

HEIR Stack … roughly

IR

Hardware Vendor ISAs
computation, memory mgmt, …

Hardware Vendor Microcode

Objectives of the Session

● Introduce FHETCH
● Motivate a common hardware IR
● Sketch a product-oriented, common-sense approach to developing a

de facto standard hardware IR
● Discuss the IR idea, starting points, and how we can work together
● Call the community to participating in the IR standard effort

Introducing FHETCH

● FHE Technical Consortium for Hardware - inquiries@FHETCH.org
● A growing industry-led community of FHE hardware and software providers,

application owners, and end users
○ Founding members: Niobium Microsystems, Optalysys, Chain Reaction
○ Join us!

● Dedicated to advancing commercial availability of FHE products

● Insight: Customers are seeking flexible and open solutions
○ Especially in a developing market

● Response: Create a market ecosystem for FHE hardware acceleration
○ Hardware interface standards
○ Benchmark suites
○ Optimization toolchains

● “Create the market, and then compete in it”

A Problem for FHE Adoption:
the Hardware Abstraction
● Modern FHE compilers target FHE libraries…

…which target ISAs of hardware (CPUs, GPUs)
● Current lack of commonality makes the latter difficult, costly

○ Waste in development
○ Software obsolescence
○ Unnecessarily complex tools
○ Customer perception of being “locked-in” to a specific vendor

● Emerging FHE co-processors and proprietary ISAs will make
this problem worse

Optimizing for Custom HW is hard…
especially if you’re not the HW vendor

● Widely different cost models for computation, memory

● Different performance “pinch points”

● Different data types and operation models

Solution Idea: A Common
Intermediate Representation
● FHE software ecosystem vendors target a lingua franca that HW

and SW vendors agree on
● FHE hardware vendors implement that lingua franca by

○ Directly matching the IR with a hardware ISA
or

○ Providing a shim transformer to the IR
● Reduced waste by shared insight
● Optimization and other tools can operate directly on the IR
● Customers can now “plug-n-play” libraries and hardware
● Emerging FHE co-processors naturally fit the IR concept

Initiative: the FHETCH IR

● Technical committee with members from software vendors,
hardware vendors, application makers, end users

● Standardization practices focused on productization
● Leverage ideas from LLVM…
● …to drive a de facto industry standard

Agenda, flexible

● Motivate a common hardware IR
● Sketch a product-oriented, common-sense approach to developing a

de facto standard hardware IR
● Discuss the IR idea, starting points, and how we can work together
● Call the community to participating in the IR standard effort

FHETCH IR and HE Frameworks

FHETCH

FH
E

 A
cc

el
er

at
or

s
(n

at
iv

e
co

de
)

Current HE
frameworks

live here

…

Desiderata for a common FHE IR

● A minimal viable IR
○ Few operations, few data types - makes code generation tractable

● …plus gadgets
○ Complex operations called out explicitly
○ Each gadget fully emulatable using the base abstraction
○ Also allows HW vendors to implement gadgets directly, as secret sauce

● A natural set of simple data types
○ Explicit, understandable semantics
○ Avoids bias for one scheme over another

● Simple structure to enable downstream optimizations
● Built-in metadata: parameters, modulus chains, instruction-level parallelism

guidance, memory pre-fetching hints

Inspiration: LLVM

● Defines an IR that can be incrementally processed, refined and optimized
● Language-independent instruction set and type system

○ Basic types such as integer, some derived types

● Target-independent IR, compiled onward to “concrete” code
● Tools for memory locality optimization, parallelization, …

Sketch of a Potential FHETCH IR

● Multiple equivalent forms: human-readable, dense bitcode for serialization
● Polynomial as the foundation data type

○ non-RNS ciphertexts represent as Nx2 arrays
○ RNS ciphertexts represent as Nx2xL arrays (L = limbs in RNS)
○ Compact representation of constant values

● Base: minimal operations on polynomials
○ ADD, ADDI, MUL, MULI, Rotation, …

● Extendable Inline Macros/Gadgets
● Infinite register set, single static assignment (SSA)
● Parameters, modulus chains, instruction-level parallelism guidance, memory

pre-fetching hints

Where FHETCH IR Fits In

FHE Libraries

Google HEIR Stack Diagram

FHETCH IR

Hardware Vendor ISAs

Hardware Vendor Microcode

Call For Action

● Participate! Contact us at inquiries@FHETCH.org
○ Hardware vendors
○ Library vendors
○ Application makers
○ Compiler ecosystem partners
○ Commercial end users

● Review & Refine
○ Assess draft definitions as they emerge

● Define a common IR before natural diversity prevents it

