
PYFHEL
PYthon For Homomorphic

Encryption Libraries
Alberto Ibarrondo

WAHC21 11/14/2021

 Alexander Viand

Agenda
11

/1
4/

20
21

2

Why a Python wrapper?
• Nicer API
• Nicer Language

→ 1

→ 2

→ 3

→ 4

→ 5Why another Python
wrapper?
• Improvements
• Teaching

Architecture & Design

Demo Time!

Conclusion

Why a Python wrapper?

11
/1

4/
20

21

3

1 Nicer API
Nicer Language

1.1 Nicer API

•Most of the canon FHE libraries (SEAL, PALISADE, HElib) are written with a functional
approach, missing convenient operator overloads (*, +, -):

•Existing API (plain, in-place ops) is driven by how operations differ in implementation,
not by how they’re used.11

/1
4/

20
21

4

Ideal code Realistic code

var t0 = 4*x;
var t1 = t1*y;
var t2 = z*z;
var t3 = t1-t2;
return t3*t3;

fhe.mul_plain_inp(x,4)
fhe.mul_inp(x,y);
fhe.square_inp(z,z);
fhe.sub_inp(x,z);
fhe.square_inp(x,x);
return x;

1.2 Nicer Language: Python

•Most of the canon FHE libraries (SEAL, PALISADE, HElib) are written in C++
•Not particularly friendly for newcomers
•No unified compilation toolchain
•But…FAST!

•Enter Python
•The second most popular full programming language (1) (just below Javascript)
→ Much more widespread: targets a wider audience
→ Newcomer friendly. Sometimes it even looks like pseudo-code!.
•More accessible: unified compilation/installation toolchain (pip install myrepo)
•Especially relevant for data domains: data science & engineering, Machine Learning
•But…SLOW!

11
/1

4/
20

21

5 (1) Stackoverflow 2021 survey: https://insights.stackoverflow.com/survey/2021#most-popular-technologies-language

FHE is already orders of
magnitude slower

Python
with C++
speed?

Why another
Python wrapper?

11
/1

4/
20

21

6

2 Improvements
Teaching

2.1 Improvements

•Python at C++ speed:
•FHE libraries based on native Python types are slower. (pyFHE).
•Automatic C++ wrapping tools like pybind11 or Boost.Python require large parts of the wrapper to
be written in C++ to preserve performance (PySEAL, TenSEAL).

•Seamless compilation:
•Standard Wrappers:
→ Precompiled binaries for each version/system (TenSEAL)

→ Compilation toolchain only in one OS (SEAL-Python)

•Our system: Actually compile from python (can be generalized to other projects!)

•Expose underlying features that don’t have a pretty API in SEAL:
•Working directly on Polynomials.
•Memory management, keeping track of sizes/pointers/etc.

11
/1

4/
20

21

7

2.2 Suitable for FHE Teaching

• FHE is establishing its presence in the CS curriculum
• “An Intensive Introduction to Cryptography” (Harvard CS 127, Boaz Barak)
• “Applied Cryptography” (ETH Zurich 263-4660, Kenny Paterson)
• “Advanced Cryptography” (Princeton COS 533, Mark Zhandry)
• …

• Practical exercises require a simple interface and an exploration-friendly playground.
• Python is dynamic! You can play with existing objects and functions at runtime
• Lots of courses use Python already (including for auto-grading systems)

• Low-level access to Polynomials enables more interesting exercises
• seal::Evaluator interface allows little beyond implementing FHE applications
• SEAL uses a very low-level representation to work on polynomials (No abstraction below Ctxt)
• Student implementations of basic schemes:
• Understanding crypto requires “breaking things” (e.g., implementing Li-Micciancio attack)
• Allows (re-)implementing core algorithms (Poly ↔ Numpy conversion allows easy verification)

11
/1

4/
20

21

8

Architecture & Design

11
/1

4/
20

21

9

3

3.1. Design Principles

•One-click install:
•Not precompiled versions (TenSeal), but actually the source code
→ Can benefit from local compiler optimizations!
• Installs CMake under the hood from a pip repo, and uses it for cmake-based libraries (SEAL ☺).
•Uses the underlying Python compiler (GCC in Linux, MSVC for windows) to compile everything.

•Functional Centralized approach

•C++ to abstract classes & Cython to move it to Python

11
/1

4/
20

21

10

pip install Pyfhel

3.2. Architecture of Pyfhel
11

/1
4/

20
21

11

DEMO Time!

11
/1

4/
20

21

12

4

4.1. DEMO I: Client-Server interaction for encrypted integer operation
11

/1
4/

20
21

13

a = 15

Client Server

HE.decrypt

HE.add
ctxta

b = 25 ctxtb
ctxta ctxtb

2 HE.multiply

res = 80

HE.encrypt

ctxtres

4.1. DEMO I: Client-Server interaction for encrypted integer operation
11

/1
4/

20
21

14

Client Server

4.2. DEMO II: Teaching common CKKS pitfalls
11

/1
4/

20
21

15

x = 3.1 ctxtx’x’ = 3.1 * 230 230

y = 4.1 ctxty’ 230

z = 5.9

260

5 ptxt5 230

ctxtz’ 230 ptxt5 230

= 3.1 * 230 * 5 * 230= 15.6 * 260

ctxtz’ 230

230

ctxtx’ 230

=3.1 * 230 + 4.1 *
230

ctxty’ 230

= 7.2 * 230

4.2. DEMO II: Teaching common CKKS pitfalls
11

/1
4/

20
21

16

Conclusion

11
/1

4/
20

21

17

5

• PYFHEL: Efficient Python wrapper for FHE libraries (SEAL ☺, PALISADE [WIP])
• One-click compilation & installation
• Operator overloads & Python grammar
• Access to underlying polynomials

• Nice tool for implementations, but also for teaching

5. Takeaways
11

/1
4/

20
21

18

Try it out now:

pip install Pyfhel

• Next Steps: Extend to other FHE Libraries, unified API across libraries.

CONTACTCONTACTCONTACT

Alberto IBARRONDO

PhD student at IDEMIA & EURECOM

ibarrond@eurecom.fr

Alexander VIAND

PhD student at ETH Zurich

alexander.viand@inf.ethz.ch

