Integer Functions Suitable for Homomorphic Encryption over Finite Fields

I. Iliashenko, C. Nègre, V. Zucca

LIRMM-DALI, Université de Perpignan Via Domitia

Workshop on Encrypted Computing & Applied Homomorphic Cryptography

November 15th 2021
What is Homomorphic Encryption (HE)?

HE allows to compute over encrypted data without the decryption key.

Applications:
- Private search queries;
- Secure multi-party computations;
- Delegation of computations over sensitive data.

\[
\begin{align*}
\text{Enc}(x), y &= \text{Enc}(f(x, y)) \\
\text{Enc}(x) &= \text{Enc}(f(x, y)) \\
f(x, y) &= \text{Enc}(x) \\
x &= \text{Enc}(x)
\end{align*}
\]
SHE model of computation

- SHE schemes can compute arithmetic circuits (+ and \(\times \)) of bounded multiplicative depth over encrypted messages.

- For security reasons HE ciphertexts contain noise components
 - noise grows after each homomorphic operation
 - noise must remain small enough to guarantee decryption’s correctness

- Complexity of homomorphic operations should be assessed regarding
 - their running time
 - the amount of noise introduced

- The complexity to evaluate an arithmetic circuit homomorphically is analyzed with relation to
 - the number of (non-scalar) homomorphic multiplications
 - its multiplicative depth
Purpose of this work

- Our work focuses on the case where the plaintext space is a prime field \mathbb{F}_p for an odd prime p (e.g. BGV, BFV).

- Study some functions having a particular structure when interpolated over \mathbb{F}_p allowing to speed-up their homomorphic evaluation.
 - multiplicative depth will remain unchanged
 - we only reduce the number of homomorphic multiplications

- In [IZ21] we noticed that the comparison function has a particular structure over \mathbb{F}_p permitting to speed-up its homomorphic evaluation
 - natural question: is this true for others functions?
 - proof of some results of [IZ21] which were ommitted

- Similarly to [IZ21] we expect a speed-up proportional to the number of homomorphic multiplications saved.
Interpolation over finite fields

The equality function can be evaluated over \mathbb{F}_p^2 as

$$\text{EQ}(x, y) = 1 - (x - y)^{p-1} = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$$

Lemma (Lagrange Interpolation)

Every function $f : \mathbb{F}_p^n \rightarrow \mathbb{F}_p$ can be interpolated by a unique polynomial $P_f(X_1, \ldots, X_n)$ of degree at most $p - 1$ in each variable

$$P_f(X_1, \ldots X_n) = \sum_{a \in \mathbb{F}_p^n} f(a) \prod_{i=1}^{n} (1 - (X_i - a_i)^{p-1})$$
The case of unary functions

- A function $f : \mathbb{F}_p \to \mathbb{F}_p$ can be interpolated with Lagrange as

$$P_f(X) = f(0) - \sum_{i=1}^{p-1} X^i \left(\sum_{a=0}^{p-1} f(a) a^{p-1-i} \right)$$

Complexity: $O(\text{supp}(P_f) \log(p - 1))$ multiplications

- Paterson-Stockmeyer algorithm gives a generic bound on the number of non-scalar multiplications to evaluate a polynomial.

 Complexity: $\sqrt{2p - 2} + O(\log p)$ multiplications

- **Goal:** find functions whose interpolation polynomial can be evaluated more efficiently.
The case of unary functions

\[P_f(X) = f(0) - \sum_{i=1}^{p-1} X^i \sum_{a=0}^{p-1} f(a) a^{p-1-i} \]

- \(\sum_{a=0}^{p-1} a^{p-1-i} = 0 \mod p \) if \(i \neq 0 \). \(f \) constant \(\implies P_f(X) = f(0) \)

- What if \(f \) is constant on some subsets of \(\mathbb{F}_p \)?

Example \(f(x) = |x|_2 = \begin{cases}
1 & \text{if } x \text{ is odd} \\
0 & \text{if } x \text{ is even}
\end{cases} \)

then \(P_{f,i} = \sum_{a \text{ odd}} a^{p-1-i} \).

\(i \) even \(\implies P_{f,i} = \sum_{a \text{ odd}} ((p - a)^2)^{(p-1-i)/2} = \sum_{a \text{ even}} a^{p-1-i} \)

\[\sum_{a=0}^{p-1} a^{p-1-i} = 2 \sum_{a \text{ odd}} a^{p-1-i} = 0 \iff P_{f,i} = 0 \]
The case of unary functions

\[i \in [1, p - 1) \cap 2\mathbb{Z} \iff P_{f,i} = 0 \]

\(P_f(X) \) has only odd degree coefficients plus the constant and leading terms

\[P_f(X) = f(0) - P_{f,p-1}X^{p-1} + Xg(X^2) \]

This observation on \(| \cdot |_2 \) can be generalized with the following lemma

Lemma

Let \(\mathbb{F}_p \) be a prime field, \(f : \mathbb{F}_p \to \mathbb{F}_p \) and \(\gamma \) a primitive \(k \)-th root of unity \((k > 0)\). Let \(S_0, S_1, \ldots, S_{k-1} \) be disjoint subsets of \(\mathbb{F}_p \) such that

- \(S_j = \gamma^j S_0 \) for \(0 \leq j < k \)
- \(\mathbb{F}_p^\times = S_0 \cup \cdots \cup S_{k-1} \)
- \(f \) is constant on each subset \(S_j \) with \(0 \leq j < k \)

Then for any \(i \in [1, p - 2] \) such that \(k \mid i \) \(P_{f,i} = 0 \) mod \(p \).
The modulo function $f_m(x) = |x|_m$

Consider the modulo m function over \mathbb{F}_p $f(x) = |x|_m$

Proposition

Let $m > 1$ be an integer and p an odd prime such that $p \equiv m - 1 \mod m$

$$P_{f_m}(X) = \frac{(p + 1)(m - 1)}{2}X^{p-1} + X \cdot g(X^2)$$

where g is a degree $(p - 3)/2$ polynomial.

Complexity $\sqrt{p - 3} + O(\log p)$ homomorphic multiplications.
The "Is power of b" function

Let $b > 1$ be an integer and $f_b : [0, p) \rightarrow \{0, 1\}$ such that

$$f_b(x) = \begin{cases}
1 & \text{if } x = b^a \text{ for some } a \geq 0 \\
0 & \text{otherwise}
\end{cases}$$

Let $\ell = \lfloor \log_b p \rfloor$, using Lagrange interpolation we get

$$P_{f_b}(X) = \sum_{a=0}^{\ell} (1 - (X - b^a)^{p-1})$$

Complexity $O(\ell \log p) = O(\log^2 p)$ homomorphic multiplications

Can we do better?
The "Is power of b" function

$$P_{f_b}(X) = - \sum_{i=1}^{p-1} X^i \sum_{a=0}^{\ell} (b^a)^{p-1-i}$$

Assuming $b^{\ell+1} = 1 \mod p$, $P_{f_b,i} \neq 0 \iff i = 0 \mod \ell + 1$.

Proposition

If $p = (b^r - 1)/k$ for some integers $k < b$ and $r \geq 1$ then

$$P_{f_b}(X) = (p - r) \sum_{i=1}^{(p-1)/r} (X^r)^i$$

Example for $b = 2$ and $p = 31 = (2^5 - 1)/1$ we have:

$$P_{f_2}(X) = 26(X^{30} + X^{25} + X^{20} + X^{15} + X^{10} + X^5)$$
The "Is power of \(b \)" function

Complexity :

1. Start by computing \(Y = X^r \)

2. Compute \(g_e(Y) = Y + Y^2 + \ldots + Y^e \) with \(e = (p - 1)/r \)
 - Precompute the elements \(Y^2, Y^4, \ldots, Y^{2^k} \) with \(k = \lceil \log_2(e) \rceil \)
 - Compute the following
 - \(S_1 = (Y + Y^2) \)
 - \(S_2 = S_1(1 + Y^2) = Y + Y^2 + Y^3 + Y^4 \)
 - \(\ldots \)
 - \(S_k = S_{k-1}(1 + Y^{2^{k-1}}) = \sum_{i=1}^{2^k} Y^i = g_{2^k}(Y) \)
 - \(g_e(Y) = S_{k-1} + Y^{2^k} \sum_{i=1}^{e-2^k} Y^i = S_{k-1} + Y^{2^k} g_{e-2^k}(Y) \)
 - \(g_e \) can be computed recursively in \(\log_2(e) \) steps

Overall

- \(\lceil \log_2(r) \rceil + \text{HW}(r) + k + k - 1 + \text{HW}(e) - 1 = O(\log p) \) mults
- \(\lceil \log_2(r) \rceil + \lceil \log_2(e) \rceil \approx \log_2(p - 1) \) depth
The less than function

Let $S \subset [0, p) \rightarrow \mathbb{F}_p$, the less than function is defined over S^2 as

$$LT_S(x, y) = \begin{cases}
1 & \text{if } x < y \\
0 & \text{otherwise}
\end{cases}$$

Taking $S = [0, p)$, using Lagrange interpolation we obtain

$$P_{LT_S}(X, Y) = \sum_{a=0}^{p-2} (1 - (X - a)^{p-1}) \sum_{b=a+1}^{p-1} (1 - (Y - b)^{p-1})$$

- It was shown in [IZ21] that P_{LT_S} has only total degree p
- [IZ21] claimed P_{LT_S} could be evaluated using $2p - 6$ homomorphic multiplications for $p \geq 5$
- Previous work required $3p - 5$ multiplications [TLW+20].
The less than function

\[P_{LT_S}(X, Y) = \sum_{a=0}^{p-2} (1 - (X - a)^{p-1}) \sum_{b=a+1}^{p-1} (1 - (Y - b)^{p-1}) \]

- From the definition of \(P_{LT_S} \) we know that:
 - \(P_{LT_S}(X, 0) = 0 \implies Y \mid P_{LT_S}(X, Y) \)
 - \(P_{LT_S}(p - 1, Y) = 0 \implies (X + 1) \mid P_{LT_S}(X, Y) \)

- It can be shown that \(P_{LT_S}(X, X) = 0 \) i.e. \((X - Y) \mid P_{LT_S}(X, Y) \)

There exist a polynomial \(f \in \mathbb{F}_p(X, Y) \) of total degree \(p - 3 \) such that

\[P_{LT_S}(X, Y) = Y(X + 1)(X - Y)f(X, Y) \]
The less than function

What does \(f \) look like? Below is the table of values of \(f \) for \(p = 7 \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

- It can be shown that \(f(X, 0) = f(X, X) \)
 \(\implies \) \(Y(X - Y) \) divides \(g(X, Y) = f(X, Y) - f(X, 0) \)

- This property can be applied recursively to \(g \) so that

\[
\begin{align*}
\frac{(p-3)}{2} \\
\sum_{n=0}^{(p-3)/2} f_n(X)Z^n \text{ with } Z = Y(X - Y)
\end{align*}
\]
Conclusions and perspective

- This work proves that several non-trivial functions can be evaluated efficiently over prime fields
 - Family of functions that can be evaluated in $\mathcal{O}(\sqrt{p})$ hom. mults
 - “Modulo m” function with $p = -1 \mod m$
 - All one polynomial over \mathbb{F}_p can be evaluated in $\mathcal{O} (\log p)$ hom. mults
 - “Is power of b” function with $p = (b^r - 1)/k$
 - When $p = 2^q - 1$ is a Mersenne prime then the “Hamming weight” and Mod2 functions can be evaluated in $\mathcal{O}(\sqrt{p}/\log p)$
 - The less-than function can be evaluated in $2p - 5$ instead of $3p - 6$ hom. mults

- Future possible interesting lines of work could include
 - extend the search of such functions to extension fields \mathbb{F}_{p^d}
 - take fully advantage of SIMD packing
 - study interpolation over rings \mathbb{Z}_{p^e}
 - current results limited to $f(x) = x - |x|_p$