
Bootstrapping in
FHEW-like
Cryptosystems

Daniele Micciancio
Yuriy Polyakov

Introduction

Bootstrapping is the core operation of fully homomorphic encryption (FHE)

2

• Bootstrapping: homomorphic evaluation of a decryption circuit using an encryption of the secret key

• Refreshes the noise to support more computations

• There are two common bootstrapping approaches for exact homomorphic encryption schemes: BGV-like and
FHEW-like

• BGV-like approach: Simultaneously refresh a vector of many (hundreds/thousands) encrypted numbers

• The latency of BGV-like bootstrapping is relatively high: from 10 seconds up to thousands of seconds (single-threaded
CPU)

• Amortized time is small (on the order of 1 ms)

• FHEW-like approach: Refresh one small number, e.g., bit, at a time, also performing an arbitrary computation
during bootstrapping

• Latency is low: from 10 ms to hundreds of milliseconds

FHEW-like approach: History

3

• Ducas and Micciancio [DM15] proposed and implemented FHEW as a scheme for Boolean operations.
Each Boolean operation (except for negation) requires bootstrapping

• They achieved a runtime of less than of one second for bootstrapping (0.69 seconds)

• The FHEW cryptosystem introduced two important technical innovations:

• The observation that the evaluation of an arbitrary function can be split into the computation of a linear function followed by a
table look-up, which can be easily performed during bootstrapping essentially at no additional cost.

• A ring version of the GSW cryptosystem (based on the Ring LWE problem), and a method to use it to efficiently implement the
cryptographic accumulator using a single (Ring) LWE ciphertext.

• Chillotti, Gama, Georgieva and Izabachene developed TFHE as an improved version of FHEW

• In [CGGI16], they reduced the runtime to 52 milliseconds by using a different bootstrapping technique and also applying several
algorithmic optimizations

• In [CGGI17], the authors further reduced the bootstrapping time to 13 milliseconds by applying further (implementation-specific)
optimizations

Differences between FHEW and TFHE

The main differences can be summarized as follows

4

• FHEW uses a ring version of the bootstrapping procedure proposed by Alperin-Sherif and Peikert [AP14] based on a
GSW cryptosystem

• TFHE employs a ring version of the bootstrapping procedure proposed by Gama, Izabachene, Nguyen and Xie
[GINX16], also based on a GSW cryptosystem

• The TFHE (FHE over the Torus) approach replaces integer arithmetic modulo q with real arithmetic over the unit
interval [0; 1)

• Binary secret distribution is used for Ring LWE instead of Gaussian distribution in FHEW

• The TFHE papers also proposed several optimizations

• There has not been a fair comparison of FHEW vs TFHE

• It was not clear which improvements come from changing the arithmetic/secret distribution and which optimizations equally apply
to both schemes

Goals of our work

The purpose of our work is twofold:

5

• Producing a standard-compliant version of the FHEW/TFHE cryptosystem, within the PALISADE lattice cryptography
library, to enable the comparison of FHEW with the other main FHE schemes (e.g., BGV and BFV) currently
considered for standardization.

• Current community standard published at HomomorphicEncryption.org only includes uniform ternary, Gaussian, and uniform
secret key distributions

• The binary secret key distribution is not properly implemented in the LWE estimator, main tool to estimate the work factor for
(Ring) LWE parameters; hence it is hard to get an accurate estimate of bits of security

• Implement (Ring LWE versions of) both bootstrapping procedures [AP14, GINX16] within the same (integer-based)
FHEW cryptosystem, in order to better understand the relative merits of the two bootstrapping methods, and the
differences between FHEW and TFHE.

Basic concepts

6

• RLWE𝑠𝑠 𝑚𝑚 = (𝑎𝑎, 𝑎𝑎𝑎𝑎 + 𝑒𝑒 + 𝑚𝑚)

• RLWE′𝑠𝑠 𝑚𝑚 = RLWE𝑠𝑠 𝑚𝑚 , RLWE𝑠𝑠 𝐵𝐵𝑚𝑚 , RLWE𝑠𝑠 𝐵𝐵2𝑚𝑚 , …, RLWE𝑠𝑠 𝐵𝐵𝑘𝑘−1𝑚𝑚

• RGSW𝑠𝑠 𝑚𝑚 = RLWE′𝑠𝑠 −𝑠𝑠 ⋅ 𝑚𝑚 , RLWE′𝑠𝑠 𝑚𝑚

• Two products that will be important for the accumulator

• RGSW × RGSW → RGSW

• RLWE × RGSW → RLWE

High-level description of bootstrapping procedure

7

Bootstrapping is implemented by means of a cryptographic
accumulator ACC holding values from 𝑍𝑍𝑞𝑞 and supporting the following
operations:

1. Initialize: ACC ← 𝑏𝑏, setting the content of ACC to any known value
𝑏𝑏 ∈ 𝑍𝑍𝑞𝑞

2. Update: ACC 𝑐𝑐 ⋅ 𝐸𝐸(𝑠𝑠) , modifying the content of the accumulator
from ACC[𝑣𝑣] to ACC[𝑣𝑣 + 𝑐𝑐 ⋅ 𝑠𝑠]

3. Extract: 𝑓𝑓(ACC), returning an encryption 𝐸𝐸(𝑓𝑓 𝑣𝑣) of function 𝑓𝑓
applied to the current content of the accumulator ACC[𝑣𝑣] .

Using this cryptographic data structure with

ek = E (s) = 𝐸𝐸 𝑠𝑠1 ,⋯ ,𝐸𝐸 𝑠𝑠𝑛𝑛

as a bootstrapping (also called “evaluation" or “refreshing") key, the
bootstrapping procedure is easily implemented by the pseudo-code

AP bootstrapping procedure

8

• The AP bootstrapping procedure [AP14] supports
basic updates ACC 𝑐𝑐 ⋅ 𝐸𝐸(𝑠𝑠) for arbitrary 𝑠𝑠 ∈ 𝑅𝑅𝑞𝑞.

• Then, ACC 𝑐𝑐 ⋅ 𝐸𝐸(𝑠𝑠) is implemented by providing
(in the bootstrapping key) encryptions 𝐸𝐸 2𝑖𝑖𝑠𝑠 of
multiples of the secret key elements 𝑠𝑠, taking the
binary expansion of 𝑐𝑐 = ∑𝑗𝑗 2𝑗𝑗𝑐𝑐𝑗𝑗, and then
executing ACC 𝑐𝑐 ⋅ 𝐸𝐸(𝑠𝑠) for all 𝑗𝑗 such that 𝑐𝑐𝑖𝑖 = 1.

• 𝐙𝐙𝑗𝑗,𝑐𝑐𝑗𝑗 are encryptions of j-th digit for the encryption
of each 𝑠𝑠𝑖𝑖

• 𝐵𝐵𝑟𝑟 is the base for digits (choosing more than 2
improves the runtime)

GINX bootstrapping procedure (extended to arbitrary
secrets)

9

• The GINX bootstrapping procedure [GINX16]
supports basic updates ACC 𝑐𝑐 ⋅ 𝐸𝐸(𝑠𝑠) where 𝑐𝑐
∈ 𝑍𝑍𝑞𝑞 is arbitrary, but 𝑠𝑠 = 0,1 is a single bit.

• For an arbitrary secret 𝑠𝑠 = ∑𝑖𝑖 2𝑖𝑖𝑐𝑐𝑖𝑖 ∈ 𝑍𝑍𝑞𝑞, one can
execute ACC (2𝑖𝑖𝑐𝑐) ⋅ 𝐸𝐸(𝑠𝑠) for all 𝑖𝑖.

• Arbitrary elements of 𝑍𝑍𝑞𝑞 can be expressed using
𝑈𝑈 = 1,2,4, … , 2𝑘𝑘−1 . For ternary secrets one can
use 𝑈𝑈 = 1,−1 or 𝑈𝑈 = 1,−2 to make the
representation unambiguous.

Optimizations applicable to both FHEW and TFHE

10

• The authors of [CGGI16] noticed that if multiplications are not needed, the product RGSW
× RGSW → RGSW van be replaced with RLWE × RGSW → RLWE

• Speed-up of 6x as compared [DM15]

• The extraction function 𝑓𝑓 can be directly included in the Update step. This leads to a
simpler and more efficient procedure.

Runtime complexity

11

• Comparison of bootstrapping computational
complexity of TFHE/GINX and FHEW/AP
methods.

• All estimates of computational complexity are
normalized to the AP complexity for 𝐵𝐵𝑟𝑟 = 23; 𝑑𝑑𝑟𝑟 =
2; q = 512.

• “Gauss Pract." corresponds to the Gaussian
secret key distribution with standard deviation =
3:19.

• “Gauss. Theor." to the case of 𝜎𝜎 = 𝑛𝑛; both
secret key distributions are assumed to be
bounded by 12𝜎𝜎.

Bootstrapping key size

12

• Comparison of bootstrapping key size for
TFHE/GINX and FHEW/AP methods.

• All estimates of computational complexity are
normalized to the AP complexity for 𝐵𝐵𝑟𝑟 = 23; 𝑑𝑑𝑟𝑟 =
2; q = 512.

• “Gauss Pract." corresponds to the Gaussian
secret key distribution with standard deviation =
3.19.

• “Gauss. Theor." to the case of 𝜎𝜎 = 𝑛𝑛; both
secret key distributions are assumed to be
bounded by 12𝜎𝜎.

Parameter sets

13

• Parameter sets for ternary secret distribution; P𝐴𝐴𝐴𝐴 and P𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 are estimated upper bounds for
decryption failure probabilities of FHEW/AP and TFHE/GINX, respectively

Experimental results

14

• Implementation was done in PALISADE v1.10.3

• Single-threaded results without AVX acceleration

Concluding remarks

15

• We presented a theoretical comparison of the FHEW/AP and TFHE/ GINX cryptosystems for common
secret key distributions. Our analysis suggests that the TFHE/GINX cryptosystem is more efficient for
binary and ternary secret key distributions while the AP bootstrapping provides better computational
complexity for Gaussian secret key distributions. We also provide an opensource implementation of
both cryptosystems in PALISADE.

• The implementation presented here did not use AVX acceleration. One of our future goals is to utilize
Intel HEXL acceleration to improve the runtime. Intel HEXL is already integrated into PALISADE but
has not been optimized for FHEW/TFHE.

• Our analysis suggests that the cost of going from binary to ternary uniform ternary secret distribution is
about 3.3x. In other words, the prior best runtime in TFHE is expected to be increased from 13 ms to
roughly 43 ms.

Q&A
Yuriy Polyakov
ypolyakov@dualitytech.com

16

References

17

[AP14] J. Alperin-Sheriff and C. Peikert. Faster bootstrapping with polynomial error. In CRYPTO 2014, volume 8616
of Lecture Notes in Computer Science, pages 297-314, 2014.

[CGGI16] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene. Faster fully homomorphic encryption: Bootstrapping
in less than 0.1 seconds. In ASIACRYPT (1), volume 10031 of Lecture Notes in Computer Science, pages 3-33, 2016.

[CGGI17] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachene. Faster packed homomorphic operations and efficient
circuit bootstrapping for TFHE. In ASIACRYPT 2017, volume 10624 of Lecture Notes in Computer Science, pages 377-
408, 2017.

[DM15] L. Ducas and D. Micciancio. FHEW: bootstrapping homomorphic encryption in less than a second. In
EUROCRYPT (1), volume 9056 of Lecture Notes in Computer Science, pages 617-640. Springer, 2015.

[GINX16] N. Gama, M. Izabachene, P. Q. Nguyen, and X. Xie. Structural lattice reduction: Generalized worst-case to
average-case reductions and homomorphic cryptosystems. In EUROCRYPT 2016, volume 9666 of Lecture Notes in
Computer Science, pages 528-558, 2016.

	Bootstrapping in FHEW-like Cryptosystems
	Introduction
	FHEW-like approach: History
	Differences between FHEW and TFHE
	Goals of our work
	Basic concepts
	High-level description of bootstrapping procedure
	AP bootstrapping procedure
	GINX bootstrapping procedure (extended to arbitrary secrets)
	Optimizations applicable to both FHEW and TFHE
	Runtime complexity
	Bootstrapping key size
	Parameter sets
	Experimental results
	Concluding remarks
	Q&A
	References

