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0.1 – Presenters
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College, USA)
● Kim Laine (Microsoft Research, USA)
● Wei Dai (Worcester Polytechnic Institute, USA)
● Nicolas Gama (Inpher, Inc., Switzerland)
● Alex J. Malozemoff (Galois, Inc., USA)
● Yuriy Polyakov (NJIT Cybersecurity Research Center, USA)
● Sergiu Carpov (CEA, LIST, France)



0.2 – Agenda – Part 1

1. Introduction to Homomorphic Encryption (Presenter: Roger Hallman)
2. HE Fundamentals (Presenter: Wei Dai)
3. How to Build HE Applications? (Presenter: Yuriy Polyakov)
4. Standardization and Open Problems (Presenter: Kim Laine)
5. Previewing Part 2 of this Tutorial (Presenter: Roger Hallman)



0.3 – Agenda – Break 

Assistance will be provided during a 30-minute break for audience members who 
are downloading and installing HE libraries.



0.4 – Agenda – Part 2

1. A High-level View of Available HE Libraries (Presenter: Roger Hallman)
2. SEAL (Presenter: Kim Laine)
3. PALISADE (Presenter: Yuriy Polyakov)
4. TFHE (Presenter: Nicolas Gama)
5. cuFHE and Hardware Acceleration (Presenter: Wei Dai)
6. Compilers for HE (Presenters: Alex Malozemoff and Sergiu Carpov)
7. Concluding Remarks (Presenter: Roger Hallman)



1.0 – Introduction to Homomorphic Encryption
What is Homomorphic Encryption (HE)?

❏ Allows for computation on encrypted data
❏ Enables outsourcing of data storage/processing

History of HE:

❏ Rivest, Adleman, Dertouzos (1978) -- “On Data Banks and Privacy 
Homomorphisms”

❏ Gentry (2009) -- “A Fully Homomorphic Encryption Scheme”
❏ Multiple HE schemes developed after 2009



1.1 – How HE is related to symmetric and public key 
encryption?

❏ HE schemes provide efficient instantiations of post-quantum public-key and 
symmetric-key encryption schemes 

❏ Homomorphic encryption can be viewed as a generalization of public key 
encryption



1.2 – FAQ
❏ Data enter / stay in / leave untrusted networks encrypted.

❏ Do operations on ciphertext and plaintext reveal secret?

No, an operation on ciphertext and plaintext outputs ciphertext.

❏ Is decryption performed during computation?

No, computation is performed 

without decryption.



1.3 – Applications

Domain Genomics Health National
Security Education Social

Security
Business 
Analytics Cloud

Sample 
Topics GWAS billing and 

reporting smart grid school 
dropouts

credit 
history prediction storage, 

sharing

Data Owner medical 
institutions

clinics and 
hospitals

nodes and 
network

schools, 
welfare government business 

owners clients

Why HE? HIPAA cyber 
insurance privacy FERPA cyber 

crimes
data are 
valuable

untrusted 
server

Who pays? health 
insurance hospital energy 

company DoE government business 
owners clients

Business models and application domains:



1.3 – Example: Healthcare 
Precision medicine requires intensive computation on highly identifiable data.

Challenges:

1. Therapy safety and efficacy must by determined.
2. Patients are concerned about privacy and agency (against breaches).
3. Agency, hospitals must ensure compliance with relevant laws (such as HIPAA).
4. Pharmaceutical companies are concerned about protecting their IP.

Currently, require unappealing trade-offs, sometimes with disastrous outcomes for both organizations and 
their patients.

HE provides a novel solution to some of these trade-offs at a cost that is minimal compared to such 
outcomes.



1.4 – Other Secure Computing Approaches
How HE is different from MPC and SGX

HE MPC SGX

Performance Compute-bound Network-bound

Privacy Encryption Encryption / 
Non-collusion

Trusted Hardware

Non-interactive ✔ ✘ ✔

Cryptographic 
security

✔ ✔ ✘
(known attacks)

● Hybrid approaches possible



2.0 – Understanding HE
❏ “Homomorphic”: a (secret) mapping from plaintext space to ciphertext space 

that preserves arithmetic operations.

❏ Mathematical Hardness: (Ring) Learning with Errors Assumption; every image 
(ciphertext) of this mapping looks uniformly random in range (ciphertext space).

❏ “Security level”: the hardness of inverting this mapping without the secret key.

❏ Example: 128 bits → 2128 operations to break



2.0 – Understanding HE

❏ Plaintext: elements and operations of a polynomial ring (mod xn+1, mod p).

❏ Example: 3x5 + x4 + 2x3 + ...

❏ Ciphertext: elements and operations of a polynomial ring (mod xn+1, mod q).

❏ Example: 7862x5 + 5652x4 + ...



2.1 – A Fresh Encryption

Plaintext mod p

Mask mod q
(removable with the 

secret key)

Initial Noise
(removable mod p)

Ciphertext

• Horizontal: each coefficient in a polynomial or in a vector.
• Vertical: size of coefficients.

Initial noise is small in terms of coefficients’ size.



2.2 – Noise Growth in Computation

Result mod p

Mask mod q
(removable with the 

secret key)

Current Noise
(removable mod p)

• Horizontal: each coefficient in a polynomial or in a vector.
• Vertical: size of coefficients.

After each level, noise increases.

Ciphertext

After some computation:



2.3 – Bootstrapping

• Horizontal: each coefficient in a polynomial or in a vector.
• Vertical: size of coefficients.

At some level, noise is too much to decrypt.

Homomorphic decryption with an encrypted secret key.

Plaintext mod p

Mask mod q
(removable with the 

secret key)

Initial Noise
(removable mod p)

Ciphertext



Too Much Noise

2.4 – Noise Overflow

Result mod p

Mask mod q
(removable with the 

secret key)

• Horizontal: each coefficient in a polynomial or in a vector.
• Vertical: size of coefficients.

At some level, noise is too much to decrypt.

Ciphertext

Too much computation:



2.5 – Encoding Techniques

Reduce ciphertext / plaintext size ratio.

1. Multi-precision integers / fractional 
numbers (mod pn).

2. Batching a vector of integers / 
fractional numbers (mod p).

Plaintext encoding should be correct 
before ciphertext evaluation.

Example:

5 × 7 mod 17 ≠ 35

Data

Plaintext

Ciphertext

Data

Plaintext

Ciphertext

Encode

Encrypt

Decode

Decrypt

Evaluate

Encoding Failure

Noise Failure



2.6 – Encoding Integers / Fractional Numbers

Plaintext mod p

Mask mod q
(removable with the 

secret key)

Initial Noise
(removable mod p)

Ciphertext

• Horizontal: each coefficient in a polynomial or in a vector.
• Vertical: size of coefficients.

Initial noise is small in terms of coefficients’ size.
Message are encoded to lower-degree terms of a plaintext.

Correctness only depend on plaintext:



2.7 – Computation on Integer / Fractional Numbers

Mask mod q
(removable with the 

secret key)

Result Noise
(removable mod p)

• Horizontal: each coefficient in a polynomial or in a vector.
• Vertical: size of coefficients.

After each level, noise increases, plaintext spreads to higher-degree terms.

Ciphertext

Result mod p



Product Noise

2.8 – Integer / Fractional Encoding Failure

Product mod p

Mask mod q
(removable with the 

secret key)

• Horizontal: each coefficient in a polynomial or in a vector.
• Vertical: size of coefficients.

At some level, plaintext reaches the highest-degree term before the noise grows too much.
Message will then be reduced mod pn.

Ciphertext



3.0 – How to Build HE Applications?
❏ How to design an HE compute model for your application?
❏ How to select the most efficient scheme and its implementation?
❏ How to encode the data prior to encryption?
❏ How to select the security parameters?
❏ How to guarantee the correctness of your implementation?
❏ How to optimize your implementation?



3.1 – Models of Homomorphic Computation
It is important to choose the right approach for designing your HE computation:

1. Boolean Circuits 
○ Plaintext data represented as bits
○ Computations expressed as Boolean circuits

2. Modular (Exact) Arithmetic 
○ Plaintext data represented as integers modulo a plaintext modulus “t” (or their vectors)
○ Computations expressed as integer arithmetic circuits mod t

3. Approximate Number Arithmetic
○ Plaintext data represented as real numbers (or complex numbers)
○ Compute model similar to floating-point arithmetic



3.2 – Boolean Circuits Approach
Features:

❏ Fast number comparison
❏ Supports arbitrary Boolean circuits
❏ Fast bootstrapping (noise refreshing procedure)

Selected schemes:

1. Gentry-Sahai-Waters (GSW) [GSW13] - foundation for other schemes
2. Fastest Homomorphic Encryption in the West (FHEW) [DM15]
3. Fast Fully Homomorphic Encryption over the Torus (TFHE) 

[CGGI16,CGGI17]



3.3 – Modular (Exact) Arithmetic Approach
Features:

❏ Efficient SIMD computations over vectors of integers (using batching)
❏ Fast high-precision integer arithmetic
❏ Fast scalar multiplication
❏ Leveled design (often used without bootstrapping)

Selected schemes:

1. Brakerski-Vaikuntanathan (BV) [BV11] - foundation for other schemes
2. Brakerski-Gentry-Vaikuntanathan (BGV) [BGV12, GHS12]
3. Brakerski/Fan-Vercauteren (BFV) [Brakerski12, FV12, BEHZ16, HPS18]



3.4 – Approximate Number Arithmetic Approach
Features:

❏ Fast polynomial approximation
❏ Relatively fast multiplicative inverse and Discrete Fourier Transform
❏ Deep approximate computations, such as logistic regression learning
❏ Efficient SIMD computations over vectors of real numbers (using batching)
❏ Leveled design (often used without bootstrapping)

Selected schemes:

1. Cheon-Kim-Kim-Song (CKKS) [CKKS17]



3.5 – Library Matrix
Library/Scheme FHEW TFHE BGV  BFV CKKS

cuFHE ✔

FHEW ✔

FV-NFLlib ✔

HEAAN ✔

HElib ✔ (✔)

PALISADE ✔ ✔ (✔)

SEAL ✔ ✔

TFHE(-Chimera) ✔ ✔ (✔) (✔)



3.6 – Application Development Best Practices
Main guidelines:

1. Choose the right compute model 
2. Choose the plaintext encoding/batching technique
3. Determine the correctness requirements for the computation
4. Consult the security tables
5. Write the code using standard API
6. Fine-tune the parameters to optimize the performance



3.7 – Application Development: Compute Model
1. Choose the compute model

○ Boolean Circuits
○ Modular (Exact) Arithmetic
○ Approximate Number Arithmetic.

2. Determine how the data should be encoded, and whether multiple pieces of 
data can be packed in single ciphertexts. 

○ One ciphertext per integer (high-precision arithmetic)
○ One ciphertext per vector of integers
○ One ciphertext per vector of real numbers
○ One ciphertext per matrix of real numbers
○ Etc.



3.8 – Application Development: Correctness
The functional parameters, such as “plaintext modulus” and “ciphertext modulus”, 
should guarantee the correctness of decrypted result.

1. Plaintext computation correctness
○ If the modular (exact) arithmetic approach is selected, verify that the result is correct:

■ 11*7 mod 50 ≠ 77
○ Always build a reference implementation in the clear. This helps a lot in debugging the 

HE-enabled application code.

2. Encrypted computation correctness
○ Each ciphertext operation increases the noise. Verify that the fresh ciphertext modulus is 

chosen to be large enough, or bootstrapping is applied before the noise can cause a 
decryption failure.



3.9 – Application Development: Security
The ring dimension (degree of polynomial) should be chosen according to the 
security tables published at HomomorphicEncryption.org (some libraries can 
select it automatically).

http://homomorphicencryption.org/


3.10 – Application Development: Performance
Fine-tune the parameters affecting the performance:

❏ Plaintext encoding settings
❏ Choose smallest ring dimension and ciphertext modulus that meet the 

correctness and security requirements
❏ Fine-tune scheme-specific parameters, such as relinearization window
❏ Update the order of HE maintenance procedures, such as relinearization, 

modulus switching/rescaling, and bootstrapping
❏ Turn on multi-threading
❏ Take advantage of library-specific performance optimization tools, such as 

memory pools or RNS representation of large integers
❏ Use specialized hardware, such as GPU, if supported by the library



4.0 – Standardization

Applications of HE in regulated industries requires standardization

❏ Finance
❏ Health-care
❏ Government
❏ Military

Must guarantee HE to be at least as secure as AES, RSA!



4.1 – Standardization Workshops

❏ In July 2017 at Microsoft
❏ In March 2018 at MIT
❏ October 20, 2018 at U Toronto

Outcomes:

❏ HomomorphicEncryption.org community
❏ White papers
❏ Mailing list
❏ Attended and endorsed by leading 

experts in crypto and security

http://homomorphicencryption.org


4.2 – White papers
Three white papers from the first workshop:

❏ Security of Homomorphic Encryption
❏ API for Homomorphic Encryption
❏ Applications of Homomorphic Encryption

Guiding principles of the standardization effort:

❏ Security is priority
❏ API standardization needed for making HE developer-friendly
❏ Motivated by practical use-cases



4.3 – Security

What is the security standard?

❏ Describes encryption schemes
❏ Describes best known attacks
❏ Describes tables of parameters in terms 

of standard security levels
❏ Written by leading security experts
❏ Available at HomomorphicEncryption.org 

http://homomorphicencryption.org


4.4 – Third Standardization Workshop

❏ On Saturday at University of Toronto
❏ Significant progress towards API standardization 
❏ Automation and developer tools
❏ Compiler for homomorphic encryption
❏ If you still want to register, come talk to me 



5.0 – Challenges and Open Problems

❏ HE is hard to use
❏ Standardized API
❏ Languages and compilers for writing and optimizing HE programs easily
❏ Higher-level automation to help developers design efficient HE-based solutions
❏ Library interoperability

❏ HE is not practical for all computations
❏ Only small/low depth arithmetic and Boolean circuits are feasible
❏ E.g. division, comparison can be costly (scheme-dependent)
❏ E.g. data filtering is impossible in the traditional sense
❏ Most computational workloads are not designed in an HE-friendly way



6.0 – What to Expect in Part II (After the Break)

30-minute break: we will help you download and install HE libraries

[SEAL] -- http://sealcrypto.org 

[PALISADE] -- https://git.njit.edu/palisade/PALISADE 

[TFHE] -- https://tfhe.github.io/tfhe 

[cuFHE] -- https://github.com/vernamlab/cuFHE (requires an NVIDIA GPU)

http://sealcrypto.org/
https://git.njit.edu/palisade/PALISADE
https://tfhe.github.io/tfhe
https://github.com/vernamlab/cuFHE


An Overview of HE Libraries
● At least 10 open source HE libraries available

○ 4 libraries presented here

● Libraries not included:
○ HeaAn - (https://github.com/kimandrik/HEAAN) 
○ HElib - (https://github.com/shaih/HElib) 
○ Λ ○ λ (“LOL”) - (https://github.com/cpeikert/Lol)

■ Used by the “ALCHEMY” compiler (Crockett, et al.)
○ NFLlib - (https://github.com/quarkslab/NFLlib) 
○ FHEW - (https://github.com/lducas/FHEW) 
○ And more...

https://github.com/kimandrik/HEAAN
https://github.com/shaih/HElib
https://github.com/cpeikert/Lol
https://github.com/quarkslab/NFLlib
https://github.com/lducas/FHEW


SEAL
Simple Encrypted Arithmetic Library

Kim Laine / kim.laine@microsoft.com

http://sealcrypto.org

mailto:kim.laine@microsoft.com
http://sealcrypto.org


Quick Background
❏ Homomorphic Encryption library from Microsoft Research
❏ First version released in 2015; SEAL 3.0 just released
❏ Developed in standard C++

❏ Implements BFV and CKKS schemes
❏ BFV for exact (e.g. integer) computations
❏ CKKS for approximate fixed-point computations

❏ Header-files extensively commented
❏ Comes with detailed examples



Downloading SEAL
❏ SEAL 3.0 source code can be downloaded as .tar.gz (Linux and OS X) or .zip 

(Windows) packages from http://sealcrypto.org
❏ SEAL is completely self-contained: no external dependencies
❏ GitHub release coming soon

http://sealcrypto.org


Building SEAL and Linking with Applications

❏ On Visual Studio use accompanying solution and project files
❏ Requires Visual Studio 2017

❏ On Linux/OS X use g++/clang++ and CMake
❏ Requires g++ >= 6 or clang++ >= 5

❏ Uses some features from C++17 but can be compiled as C++14 if necessary
❏ With CMake easy to configure and link with your application

cmake_minimum_required(VERSION 3.10)
project(CCSTutorial)
add_executable(example example.cpp)
find_package(SEAL 3.0.0 REQUIRED)
target_link_libraries(example SEAL::seal)



❏ Best way to learn to use SEAL is going over SEALExamples/main.cpp

❏ Doing something with SEAL is not so hard …

❏ But doing it well can be

❏ Learning to use SEAL efficiently will require a lot of work

❏ Recommendation: Learn BFV scheme first; CKKS after that

❏ In the future: Compilers and better developer tools will help

❏ StackOverflow tag [seal]

Learning to Use SEAL



Now let’s look at some code ...



SEAL
Simple Encrypted Arithmetic Library

http://sealcrypto.org

http://sealcrypto.org


PALISADE
Yuriy Polyakov (NJIT)

CCS’18 Tutorial: “Building Applications with 
Homomorphic Encryption” 

October 19, 2018



PALISADE Lattice Cryptography Library (NJIT)

❑ Project-based Development since 2014
❑ Next generation of DARPA PROCEED SIPHER project

❑ Cryptographic program obfuscation (DARPA Safeware)

❑ Homomorphic Encryption for statistical analysis (Sloan, IARPA)

❑ Proxy Re-Encryption for Pub/Sub systems (Simons, NSA)

❑ HE backend for Secure Programming in Julia (IARPA)

❑ Implementation Partners and Collaborators
❑ Academia: MIT, UCSD, WPI, NUS, Sabanci U

❑ Industry: Raytheon (BBN), IBM Research, Lucent, Vencore Labs, Galois, Two Six Labs

❑ BSD 2-clause license 

❑ Cross-Platform Support



Modular Design
 



Capabilities

❑ Public Key Encryption/Homomorphic Encryption
❑ 3 variants of BFV scheme

❑ BGV

❑ LTV, Stehle-Steinfeld

❑ Null

❑ Proxy Re-Encryption based on all of the above HE schemes

❑ Capabilities that will be released within next few months (in v1.4 and v2.0)
❑ CKKS HE scheme

❑ Identity-based encryption, 2 variants of attribute-based encryption

❑ GPV digital signature



Key Concepts/Classes

❑ CryptoContext
❑ A wrapper that encapsulates the scheme, crypto parameters, encoding parameters, and keys

❑ Provides the same API for all HE schemes

❑ Ciphertext
❑ Stores the ciphertext polynomials

❑ Plaintext
❑ Stores the plaintext data (both raw and encoded)

❑ Supports multiple encodings in a polymorphic manner, including PackedEncoding, 
IntegerEncodering, CoefPackedEncoding, etc.



Sample Program: Step 1 – Set CryptoContext
//Set the main parameters

int plaintextModulus = 65537;

double sigma = 3.2;

SecurityLevel securityLevel = HEStd_128_classic;

uint32_t depth = 2;

//Instantiate the crypto context

CryptoContext<DCRTPoly> cryptoContext = 
CryptoContextFactory<DCRTPoly>::genCryptoContextBFVrns(

plaintextModulus, securityLevel, sigma, 0, depth, 0, OPTIMIZED);

//Enable features that you wish to use

cryptoContext->Enable(ENCRYPTION);

cryptoContext->Enable(SHE);



Sample Program: Step 2 – Key Generation
// Initialize Public Key Containers

LPKeyPair<DCRTPoly> keyPair;

// Generate a public/private key pair

keyPair = cryptoContext->KeyGen();

// Generate the relinearization key

cryptoContext->EvalMultKeyGen(keyPair.secretKey);



Sample Program: Step 3 – Encryption
// First plaintext vector is encoded

std::vector<uint64_t> vectorOfInts1 = {1,2,3,4,5,6,7,8,9,10,11,12};

Plaintext plaintext1 = cryptoContext->MakePackedPlaintext(vectorOfInts1);

// Second plaintext vector is encoded

std::vector<uint64_t> vectorOfInts2 = {3,2,1,4,5,6,7,8,9,10,11,12};

Plaintext plaintext2 = cryptoContext->MakePackedPlaintext(vectorOfInts2);

// Third plaintext vector is encoded

std::vector<uint64_t> vectorOfInts3 = {1,2,5,2,5,6,7,8,9,10,11,12};

Plaintext plaintext3 = cryptoContext->MakePackedPlaintext(vectorOfInts3);

// The encoded vectors are encrypted

auto ciphertext1 = cryptoContext->Encrypt(keyPair.publicKey, plaintext1);

auto ciphertext2 = cryptoContext->Encrypt(keyPair.publicKey, plaintext2);

auto ciphertext3 = cryptoContext->Encrypt(keyPair.publicKey, plaintext3);



Sample Program: Step 4 – Evaluation
// Homomorphic additions

auto ciphertextAdd12 = cryptoContext->EvalAdd(ciphertext1,ciphertext2);

auto ciphertextAddResult = cryptoContext->EvalAdd(ciphertextAdd12,ciphertext3);

// Homomorphic multiplications

auto ciphertextMul12 = cryptoContext->EvalMult(ciphertext1,ciphertext2);

auto ciphertextMultResult = cryptoContext->EvalMult(ciphertextMul12,ciphertext3);



Sample Program: Step 5 – Decryption
// Decrypt the result of additions

Plaintext plaintextAddResult;

cryptoContext->Decrypt(keyPair.secretKey, ciphertextAddResult, &plaintextAddResult);

// Decrypt the result of multiplications

Plaintext plaintextMultResult;

cryptoContext->Decrypt(keyPair.secretKey, ciphertextMultResult, 
&plaintextMultResult);

// Output results

cout << plaintextAddResult << endl;

cout << plaintextMultResult << endl;



Real Application Implemented in PALISADE

❑ Secure Genome-Wide Association Study (GWAS)
❑ 245 individuals

❑ 3 phenotypic covariates

❑ 15K SNPs (genetic variations)

❑ iDASH’18 Track 2

❑ Goal: Identify which SNPs may be associated to a certain disease/condition

❑ Result: A highly accurate solution with the following performance
❑ End-to-end runtime on a 4-core machine: under 4 minutes

❑ RAM utilization: under 10 GB



Design Decisions
Guideline Decision

Choose the right compute model Approximate Number Arithmetic; CKKS

Choose the plaintext encoding/batching 
technique

Packed encoding: two variants

Determine the correctness requirements for the 
computation

Ran computations in the clear to find the 
plaintext parameters providing adequate 
accuracy

Consult the security tables Chose N = 215 and log2 q = 850 based on the 
security standard

Write the code using standard API Implemented using the PALISADE 
CryptoContext wrapper

Fine-tune the parameters to optimize the 
performance

Used a full RNS variant of CKKS; Applied many 
optimizations: encoding switching, lazy key 
switching, etc.



More Information

❑ Download the library
❑ https://git.njit.edu/palisade/PALISADE 

❑ Download the manual
❑ https://git.njit.edu/palisade/PALISADE/blob/master/doc/palisade_manual.pdf

❑ Contact by email if you have any questions
❑ palisade@njit.edu 

❑ Q&A

https://git.njit.edu/palisade/PALISADE
https://git.njit.edu/palisade/PALISADE/blob/master/doc/palisade_manual.pdf
mailto:palisade@njit.edu


TFHE
Fast Fully Homomorphic Encryption over the Torus

https://github.com/tfhe/tfhe 

https://github.com/tfhe/tfhe


http://lab.algonics.net/slides/index-ccs.html#/

http://lab.algonics.net/slides/index-ccs.html#/


cuFHE
CUDA-enabled Fully Homomorphic Encryption

https://github.com/vernamlab/cuFHE

Wei Dai (WPI) / wdai@wpi.edu

https://github.com/vernamlab/cuFHE
mailto:wdai@wpi.edu


Features
● Implementing the TFHE scheme: binary gates.

○ Single-bit encryption / decryption / evaluation.

● Developed in C++, interfaces wrapped in Python.

● Homomorphic binary gates on CUDA-enabled GPUs.

● Performance

Library Platform (Price) Amortized
Gate Latency

Throughput Speedup

TFHE CPU (unknown) 13 ms 77 gates / sec 1×

cuFHE Titan Xp ($1,200) 500 μs 2,000 gates / sec 26×

cuFHE Tesla V100 ($8,000) 137 μs 7,300 gates / sec 95×



How to Use

import lib.fhepy_gpu as fhe

pubkey, prikey = fhe.KeyGen()

m1 = random.randint(0,1)

m2 = random.randint(0,1)

c1 = fhe.Encrypt(m1, prikey)

c2 = fhe.Encrypt(m2, prikey)

c = c1 & c2

c = c1 | c2

c = c1 ^ c2

fhe.NAND(c, c1, c2)

c = ~(c1 & c2)

result = c.Decrypt(prikey)

PriKey pri_key;

PubKey pub_key;

KeyGen(pub_key, pri_key);

Ptxt* pt = new Ptxt[2];

pt[0].message_ = rand() % Ptxt::kPtxtSpace;

pt[1].message_ = rand() % Ptxt::kPtxtSpace;

Ctxt* ct = new Ctxt[2];

Encrypt(ct[0], pt[0], pri_key);

Encrypt(ct[1], pt[1], pri_key);

Nand(ct[0], ct[0], ct[1]);

And(ct[0], ct[0], ct[1]);

Xor(ct[0], ct[0], ct[1]);

Decrypt(pt[0], ct[0], pri_key);

Every circuit can be expressed with binary gates.



Hardware Acceleration
for HE



Performance Bottlenecks of HE
● Data Efficiency

○ Ciphertexts

○ Relinearization keys, bootstrapping keys

○ Requires high memory bandwidth

● Computational Efficiency
○ Polynomial ring arithmetic

○ Integer modular arithmetic

○ Requires high computational power / cost ratio



Comparison of Platforms

CPU GPU FPGA

Computation / Price Bad Good OK

Computation / Power Bad Good Better

Memory Efficiency Better Good Bad

Portability & Scalability Good Good Bad

Programming Effort Good OK Bad

Performance Growth Limited Good Limited

Popularity Good OK Bad



Previous Works using GPUs
More than 30× speedup over a single-threaded CPU

Comparing homomorphic multiplications of ciphertexts

GPU Works Scheme Speedup over CPU

cuHE general 30×

cuFHE TFHE 30× (100× on V100)

nuFHE TFHE 100× on P100

SEAL Dev full-RNS BFV 50×

ASTAR full-RNS BFV 30× on P100

By default, the GPU used is Titan Xp, unless specified.



Previous Works using FPGAs
Better performance / power consumption vs. GPUs.

Worse performance / price vs. GPUs.

Comparing homomorphic multiplications of ciphertexts

FPGA Works Scheme Speedup over CPU

Öztürk, Doröz, Sunar, Savaş LTV variant 100×

SEAL Dev full-RNS BFV 20× (~120×)

Performance varies greatly on different FPGA models.



Application-specific Integrated Circuit (ASIC)
● CPU, GPU and FPGA are general purpose.

● Design driven by
○ CPU: general

○ GPU: AI, Machine Learning, Computer Graphics

○ FPGA: DSP

● There has never been a hardware platform specific for HE.

● Base cost starts at a few millions (USD).

● Ideal in future, when there is a market.



Compilers for HE



Why have compilers?
1. Writing HE code directly can be tedious

void
dot(SEALContext &context,
    vector<Ciphertext> &vec1, vector<Ciphertext> &vec2,
    Ciphertext &dotprod)
{
  Evaluator evaluator(context);
  evaluator.multiply(vec1[0], vec2[0], res);
  for (int i = 1; i < vec1.size(); ++i) {
    Ciphertext tmp;
    evaluator.multiply(vec1[i], vec2[i], tmp);
    evaluator.add(dotprod, tmp);
  }
}

void
dot_parms(EncryptionParameters &parms, size_t size)
{
  ChooserEncoder encoder(3);
  ChooserEncryptor encryptor;
  ChooserEvaluator evaluator;
  vector<ChooserPoly> vec1, vec2;
  ChooserPoly dotprod;
  // ...
  res = evaluator.multiply(vec1[0], vec2[0]);
  for (int i = 1; i < size; ++i) {
    ChooserPoly tmp;
    tmp = evaluator.multiply(vec1[i], vec2[i]);
    res = evaluator.add(dotprod, tmp);
  }
  evaluator.select_parameters({ dotprod },0,parms);
}

Dot product (in SEAL) Parameter selection (in SEAL)

Code very similar: easy to introduce bugs



Why have compilers?
1. Writing HE code directly can be tedious
2. Code not easy to analyze/optimize

void
multmany(SEALContext &context,
         vector<Ciphertext> &vec,
         Ciphertext &res)
{
  Evaluator evaluator(context);
  for (int i = 1; i < vec.size(); ++i) {
    evaluator.multiply(vec[i], res, res);
  }
}

Goal: Compile as tree of mults to reduce depth

Requires full C++ code analysis



Why have compilers?
1. Writing HE code directly can be tedious
2. Code not easy to analyze/optimize
3. Programs must have finite number of operations

int
gcd(int a, int b)
{
    return b == 0 ? a : gcd(b, a % b);
}

How do we compute the max depth of this computation?



Why have compilers?
1. Writing HE code directly can be tedious
2. Code not easy to analyze/optimize
3. Programs must have finite number of operations

4. Branching is hard:

- if / else / switch: need to execute all branches

- for / while: need computable loop bound

High-level languages + compilers help address all of these concerns!



(Select) compiler approaches
● RAMPARTS
● HE-IR
● Cingulata
● (Several other approaches in the literature)



RAMPARTS
● Compiles Julia → PALISADE

function sharpen(image::Array{Int,2})::Array{Int,2}
  weight = [[1 1 1]; [1 -8 1]; [1 1 1]]
  image2 = deepcopy(image)
  dx,dy = size(image)
  for x = 2:dx-1, y = 2:dy-1
    value = 0
    for j = -1:1, i = -1:1
      value += weight[i+2,j+2] * image[x+i,y+j]
    end
    image2[x,y] = image[x,y] - (value >> 1)
  end
  image2
end

            : Programming language targeting scientific users (similar to MATLAB)

Uses symbolic simulation to convert 
Julia program into arithmetic circuit



HE-IR
● How should we define an intermediate representation for HE?

○ “Frontend” compilers compile from <insert favorite language here> to IR
○ “Backend” compilers compile from IR to <insert favorite HE library here>

● IR should be:
○ Easy to analyze (for parameter selection / optimizations)
○ Accurately capture HE capabilities / limitations

● Work in progress:
○ Initially investigated “assembly language” approach

■ Unconstrained branching (e.g., jumps and labels) makes analysis hard
○ Currently targeting SEAL only
○ Feedback/suggestions welcome!



HE-IR: Architecture

HE-IR

SEAL PALISADE TFHE

C++ Julia R ...

...



HE-IR: Example

input vec1 : ct[<=20]
input vec2 : ct[<=20]
output dotprod : ct

if vec1.length() != vec2.length() {
fail "both vectors must be the same length"

}

if vec1.length() < 1 {
fail "vector length must be greater than zero"

}

let! res : ct = vec1[0] * vec2[0]

for i : int in [1 .. vec1.length() - 1] {
  res = res + (vec1[i] * vec2[i])
}

dotprod = res

⇒
Parameter Selection Code

Executable Program



Cingulata
● Toolchain for compiling and running programs over FHE

○ C++ input, instrumented ints build boolean circuit
○ Efficient multiplicative depth minimization modules
○ Parallel runtime environment
○ Tools for generating keys, encryption, decryption and execution 

● Cingulata v2 to come...
○ Python input
○ Generic interface for HE libraries
○ On-the-fly optimized execution for bootstrapped schemes (TFHE)

● Available here:

https://github.com/CEA-LIST/Cingulata 

https://github.com/CEA-LIST/Cingulata


Cingulata - bubble sorting arrays
● Clear and Cingulata versions

template<typename integer>
void bsort(integer* const arr, const int n)
{
  for(int i=0;i<n-1;i++)
  {
    for(int j=1;j<n-i;j++)
    {
      integer swap = arr[j-1]>arr[j];
      integer t = select(swap,arr[j-1],arr[j]);
      arr[j-1] = select(swap,arr[j],arr[j-1]);
      arr[j] = t;
    }
  }
}

// here select(c,a,b) ≡ c?a:b

template<typename integer>
void bsort(integer* const arr, const int n)
{
  for(int i=0;i<n-1;i++)
  {
    for(int j=1;j<n-i;j++)
    {

integer swap = arr[j-1]>arr[j];
if (swap) {

        integer t = arr[j-1];
        arr[j-1] = arr[j];
        arr[j] = t;
      }
    }
  }
}



Cingulata compilation and execution process
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Cingulata - conclusion
Compiling and running HE applications in Cingulata

● As simple as two lines

make hello
bash run.sh

https://github.com/CEA-LIST/Cingulata 

https://github.com/CEA-LIST/Cingulata


Demo


